Investigation of the alignment layers on fluorinated amorphous carbon films by plasma beam aligning

<u>Tai-Hung Chen</u>¹, Jyh-Tong Teng¹, Chi-Hung Liu², Chin-Yang Lee², Huang Chin Tang², Chun-Hsien Su², Shermann Lin²,

¹Department of Mechanical Engineering, Chung Yuan Christian University, Chungli, Taiwan, R.O.C.

²Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, Taiwan, R.O.C.

¹Visiting Scholar, Department of Mechanical Engineering, University of California, Berkeley, California 94720, U.S.A.

Abstract: The liquid crystal alignment of fluorinated carbon films which deposited on the ITO glass has been improved by plasma beam aligning. The a-C:F films properties and LC cell measurement were estimated to investigate the relationship between the gaseous H_2/Ar ratio and LC alignment characteristics. It was found that the ion bombardment of films have a minimal impact on the alignment properties. Moreover, the H_2/Ar plasma beam aligning induces bond-breaking and chain scission from the XPS results. Finally, the F/C ratio of a-C:F films could be controlled by the H_2/Ar ratio and it could indicated the pretilt angle.

Keywords: a-C:F films, plasma beam aligning, pretilt angle, F/C ratio.

1. Introduction

The alignment layers play an important role for liquid crystal display (LCD), and the alignment technology has been used to align liquid crystal (LC) molecules along a certain direction. Until now, a rubbing technology has been used to align LC molecules on polyimide (PI) films [1]. The rubbing method generates parallel grooves of micron size. The grooves are useful for the enhancement of LC alignment, which was called grooving mechanism [2]. However, for the current generation of rubbing technology, the mechanical rubbing method has some drawbacks, such as the surface electrostatic charges, broken debris, alignment irregularity, and contaminating particles [3]. To avoid these drawbacks, some non-contact alignment technologies such as ultraviolet (UV) light irradiation [4], Kaufman ion beam alignment [5], and plasma beam alignment have been developed [6]. The non-contact alignment methods were expected to replace the mechanism rubbing method. Until now, PI films and diamond-like carbon (DLC) films were used for alignment layers. Recently, a plasma beam alignment has been developed to enhance the properties of LC alignment for PI and DLC films [7]. The different properties (associated with plasma beam alignment and Kaufman ion beam alignment) were that plasma beam alignment requires no extra electric field to extract ions and the plasma-beam flux is generated by anode layer thruster (ALT) [8].

The amorphous fluorinated carbon (a-C:F) films have attracted the attentions of researchers and practitioners alike due to their chemical stability, low surface energy, low refraction, good electrical and thermal properties. The unique property of a-C:F films is hydrophobic surface to compare with DLC films. The precursors for depositing a-C:F films include fluorine containing compounds and hydrogen containing additives [9].

In the present study, the physical and chemical prop-

erties of a-C:F films by H_2/Ar plasma beam aligning were investigated. In the meantime, a-C:F films properties and LC cell measurement were used to investigate the relationship between the gaseous H_2/Ar ratio and LC alignment. The relationship between the fluorine-to-carbon (F/C) ratios and pretilt angle has found to have a major impact on the formation of the a-C:F films.

2. Experimental Procedures

Fig. 1 Schematic diagram of a plasma beam aligning system.

The a-C:F films were deposited on substrates such as 30 cm- Ω indium tin oxide (ITO) glasses and single crystalline silicon in a plasma-enhanced chemical vapor deposition (PECVD) reactor. During the preparation process, all substrates were cleaned ultrasonically prior to depositing a-C:F films. In addition, all substrates were cleaned with acetone and de-ionized (DI) water. The pre-depositing substrates were cleaned for 1 min in O₂ plasma. Subsequently, the a-C:F films were deposited in a quartz bell jar reactor with an external electrode for ra-

dio-frequency (RF) power. The a-C:F films were deposited by C_6F_6 plasma at 100 W of radio-frequency (RF) power and a working pressure of 300 mtorr. The depositing time was 1 min to obtain a uniform a-C:F films. The thicknesses of a-C:F films were about 140-150 nm. The chemical composition such as the F/C ratio and C-F_x bonding structure of a-C:F films were measured by X-ray photoemission spectroscopy (XPS).

The H₂/Ar plasma beam aligning was used for the treatment of a-C:F films. Figure 1 shows the schematic diagram of a plasma beam aligning system. The plasma characteristics are controlled by the process parameters. In the process experiment, the applied voltage of a plasma beam aligning was 400V at a working pressure of 1.2 mtorr. The incident angle of a plasma beam aligning was fixed at 20° with the scanning speed of 6 mm/s. The distance between the a-C:F sample and the plasma beam source was set to be 60 mm. The gaseous H₂/Ar ratio (ranging from 0% to 100%) was the key factor determining the outcome of the plasma beam aligning. Subsequent to the plasma beam aligning, the physical characteristics of a-C:F films were measured by scanning electron microscope (SEM) and atomic force microscopy (AFM), which the hydrophobic characteristic was measured by contact angle analyzer (CAA).

The twisted nematic (TN) LC cells of 20 mm×30 mm were assembled using the an anti-parallel configuration. The pretilt angle of TN LC cells was measured by crystal rotation method. The type of a TN LC was ZLI-2293, and the gap of the LC cell was about 30 μ m. Finally, the LC alignment ability was measured by polar optical microscope (POM).

3. Result and Discussion

3.1 Ion bombardment reaction

From the ion bombardment view point, Fig.2 shows the morphology (SEM & AFM images) of a-C:F films by H₂/Ar plasma beam aligning. It was known that surface treatments made by plasma could result in both surface cross-linking and chain scission. For this study, as observed by SEM, the surface variation of a-C:F films resulting from plasma beam aligning has a minimal effect. roughness (expressed in terms The of its root-mean-square value, Rms) of a-C:F films was measured to be below 5 nm before and after the alignment. No obvious surface grooves of a-C:F films were observed after plasma beam aligning. As a result, the ion bombardment has a minimal impact on the surface morphology.

Fig. 2 SEM & AFM images of a-C:F films: (a) aligned with gaseous $H_2/Ar = 1$; (b) non-aligned.

3.2 Chemical reaction

(b)

Fig. 3 Contact angle images of a-C:F films: (a) aligned with gaseous $H_2/Ar = 1$; (b) non-aligned.

The contact angle images of a-C:F films were measured before and after the H₂/Ar plasma beam aligning, as shown in Fig. 3. A significant decrease in the contact angle was observed after H₂/Ar plasma beam aligning. The contact angle of a-C:F films was 103.5° and 45.3°, respectively, before and after H₂/Ar plasma beam aligning. The surface property of a-C:F films was hydrophobic without alignment. The F concentration of a-C:F films decreases substantially by H_2/Ar plasma beam aligning, due to the fact that the scission of C-F bonds was measured by H_2/Ar plasma beam aligning. From the result shown in Fig. 3, the hydrophobic property of a-C:F films reduces significantly by H_2/Ar plasma beam aligning.

Fig. 4 C 1s spectra of a-C:F films as a function of F concentration: (a) aligned with gaseous $H_2/Ar = 1$; (b) non-aligned.

To investigate the surface chemical bonds of a-C:F films for a H_2/Ar plasma beam aligning, XPS was used for measurements. Fig. 4 shows the C 1s spectra of a-C:F films as a function of F concentration, measured by XPS. It is noted that XPS can detect the F concentration as well as the cross-linking in the a-C:F films. The measurements show relative magnitudes of F and C before and after the H_2/Ar plasma beam aligning. The deconvolution of C 1s

XPS spectra shows the various CF_x groups in a-C:F films. According to Yang and Oh [10], the peaks at 284.6, 286.4, 287.9, 289.2, 291.2, 293.2 and 294.9eV were assigned to C-C, C-CF_x, CF-CF_x, CF, CF₂, CF₃ and π -bond shake-up, respectively. The main features of C 1s XPS spectra include C-CF_x, CF, CF-CF_x, CF₂ and CF₃ compositions a-C:F films. It was found that the intensities of the CF₂ and CF_3 species decrease, while that of $C-CF_x$ increases after H₂/Ar plasma beam aligning. According to previous study, carbon network preferred to combine with CF₂ and CF₃ bonds with an increase of the F concentration in a-C:F films. The CF₂ and CF₃ bonds were basic units of polytetrafluoroethylene (PTFE) and as a result of this, the surface is hydrophobic [11]. From the results shown in Fig. 4, it is observed that the amount of CF_2 and CF_3 bonds decreases substantially by H₂/Ar plasma beam aligning, since the C-F bonds were destroyed by Ar⁺ and H radical in a-C:F films. This clearly shows that the hydrophobic property of a-C:F films decreases by H₂/Ar plasma beam aligning.

3.3 TN LC cells measured

Fig. 5 POM photographs of TN LC cells. (a) aligned with gaseous $H_2/Ar = 1$; (b) non-aligned.

The photographs of TN LC cells, obtained by polar optical microscope, were taken before and after the H_2/Ar

plasma beam aligning, as shown in Fig. 5. The LC alignment effect is preferable with a-C:F films treated by various gaseous H_2/Ar ratio (ranging from 0% to 100%) of plasma beam. As shown in Fig. 5, the experimental results indicate that an excellent uniformity in a-C:F alignment films was attained by using the H_2/Ar plasma beam aligning.

Fig. 6 The pretilt angle and F/C ratio on a-C:F films as a function of H_2/Ar ratio.

In order to understand the impact of treatment of H₂/Ar plasma beam aligning on the LC alignment, a crystal rotation method was used to measure pretilt angle by various gaseous H₂/Ar ratios. It is noted that the pretilt angle of non-alignment is close to 0°. The pretilt angle of a-C:F films are about $3.15 - 4.11^\circ$ with various gas H₂/Ar ratios. The pretilt angle and F/C ratio on a-C:F films as a function of H_2/Ar ratio are shown in Fig. 6. When the volumetric flow rate of H₂ is greater than that of Ar, H₂ will be dissociated to generate radicals, enhancing the chemical etching reaction on the a-C:F films, as shown in Fig. 6. Since the dissociation rate of H_2/Ar is low, the amount of fluorine being changed by the dissociated H₂/Ar is low as well, leading to a low quantity of fluorine being carried away by the H₂ stream. On the other hand, as the flow rate of Ar increases, the overall dissociation rate of H₂/Ar is also increased, resulting in a more effective ion bombardment. In the meantime, the dissociated ion, Ar⁺, breaks the bonding of the a-C:F films, leading to a reduction the amount of fluorine at the film surface. As the ratio of H₂/Ar becomes unity, the dual effect of chemical etching reaction and ion bombardment causes a drastic reduction in the amount of fluorine. From the curve of pretilt angle as shown in Fig. 6, it is observed that this curve follows the trend of the F/C ratio curve. It should be noted that the amount of fluorine on the film surface has a major effect on the hydrophobia property of the surface. It should also be that Fig. 6 provides the graphs for the relationship between CF₂ and CF₃ bonds and the pretilt angles.

4. Conclusion

An effective methodology of determining the relationship between the films' F/C ratio and pretilt angle has been proposed in this paper. The LC alignment quality of a-C:F films deposited on the ITO glass was observed to be improved by plasma beam aligning. Besides, the ion bombardment of a-C:F films was found to have a minimal impact on the alignment characteristics. From the experimental results as observed by XPS, the H₂/Ar plasma beam aligning induces bond-breaking and chain scission of the a-C:F films. The CF₂ and CF₃ bonds play an important role of hydrophobic property with various H₂/Ar plasma beam aligning. Finally, it was observed that the F/C ratio of a-C:F films is controlled by the H₂/Ar ratio.

References

- J. Stohr and M. G. Samant, J. Electron Spectrosc. Relat. Phenom. 98-99, 189 (1999).
- [2] D. W. Berreman, Mol. Cryst. Liq. Cryst. 23, 187 (1973).
- [3] H. Matsuda, D. –S. Seo, N. Yoshida, K. Fujibayshi, S. Kobayshi, Mol. Cryst. Liq. Cryst. 264, 23 (1995).
- [4] T. N. Oo, T. Iwata, M. Kimura and T. Akahane, Science and Technology of Advanced Material 6, 149-157 (2005).
- [5] P. Chaudhari *et al.*, Nature **411**, 56 (2001).
- [6] O. Yaroshchuk et al., Journal of the SID 13/4 (2005).
- [7] K. Y. Wu, C.-H. Chen, C.-M. Yeh, and J. Hwang, J. Appl. Phys. 98, 083518 (2005).
- [8] O. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, L. Qiu and O. D. Lavrentovich, Liq. Cryst. 31, 859 (2004).
- [9] T. C. Wei, C. H. Liu, Surf. Coat. Technol. 200, 2214 (2005).
- [10] G. H. Yang, S. W. Oh, E. T. Kang and K. G. Neoh, J. Vac. Sci. Technol. A 20(6), Nov/Dec (2002).
- [11] R. S. Butter, D. R. Eaterman, A. H. Lettington, R. T. Ramos and E. J. Fordham, Thin Solid Films **311**, 107 (1997).